3.4.41 \(\int \frac {a+a \tan (e+f x)}{(d \tan (e+f x))^{5/2}} \, dx\) [341]

Optimal. Leaf size=98 \[ \frac {\sqrt {2} a \text {ArcTan}\left (\frac {\sqrt {d}-\sqrt {d} \tan (e+f x)}{\sqrt {2} \sqrt {d \tan (e+f x)}}\right )}{d^{5/2} f}-\frac {2 a}{3 d f (d \tan (e+f x))^{3/2}}-\frac {2 a}{d^2 f \sqrt {d \tan (e+f x)}} \]

[Out]

a*arctan(1/2*(d^(1/2)-d^(1/2)*tan(f*x+e))*2^(1/2)/(d*tan(f*x+e))^(1/2))*2^(1/2)/d^(5/2)/f-2*a/d^2/f/(d*tan(f*x
+e))^(1/2)-2/3*a/d/f/(d*tan(f*x+e))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 98, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3610, 3613, 211} \begin {gather*} \frac {\sqrt {2} a \text {ArcTan}\left (\frac {\sqrt {d}-\sqrt {d} \tan (e+f x)}{\sqrt {2} \sqrt {d \tan (e+f x)}}\right )}{d^{5/2} f}-\frac {2 a}{d^2 f \sqrt {d \tan (e+f x)}}-\frac {2 a}{3 d f (d \tan (e+f x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Tan[e + f*x])/(d*Tan[e + f*x])^(5/2),x]

[Out]

(Sqrt[2]*a*ArcTan[(Sqrt[d] - Sqrt[d]*Tan[e + f*x])/(Sqrt[2]*Sqrt[d*Tan[e + f*x]])])/(d^(5/2)*f) - (2*a)/(3*d*f
*(d*Tan[e + f*x])^(3/2)) - (2*a)/(d^2*f*Sqrt[d*Tan[e + f*x]])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3610

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b
*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 + b^2))), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3613

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2*(d^2/f),
Subst[Int[1/(2*c*d + b*x^2), x], x, (c - d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x
] && EqQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {a+a \tan (e+f x)}{(d \tan (e+f x))^{5/2}} \, dx &=-\frac {2 a}{3 d f (d \tan (e+f x))^{3/2}}+\frac {\int \frac {a d-a d \tan (e+f x)}{(d \tan (e+f x))^{3/2}} \, dx}{d^2}\\ &=-\frac {2 a}{3 d f (d \tan (e+f x))^{3/2}}-\frac {2 a}{d^2 f \sqrt {d \tan (e+f x)}}+\frac {\int \frac {-a d^2-a d^2 \tan (e+f x)}{\sqrt {d \tan (e+f x)}} \, dx}{d^4}\\ &=-\frac {2 a}{3 d f (d \tan (e+f x))^{3/2}}-\frac {2 a}{d^2 f \sqrt {d \tan (e+f x)}}-\frac {\left (2 a^2\right ) \text {Subst}\left (\int \frac {1}{2 a^2 d^4+d x^2} \, dx,x,\frac {-a d^2+a d^2 \tan (e+f x)}{\sqrt {d \tan (e+f x)}}\right )}{f}\\ &=\frac {\sqrt {2} a \tan ^{-1}\left (\frac {\sqrt {d}-\sqrt {d} \tan (e+f x)}{\sqrt {2} \sqrt {d \tan (e+f x)}}\right )}{d^{5/2} f}-\frac {2 a}{3 d f (d \tan (e+f x))^{3/2}}-\frac {2 a}{d^2 f \sqrt {d \tan (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.16, size = 68, normalized size = 0.69 \begin {gather*} -\frac {\left (\frac {1}{3}+\frac {i}{3}\right ) a \left (\, _2F_1\left (-\frac {3}{2},1;-\frac {1}{2};-i \tan (e+f x)\right )-i \, _2F_1\left (-\frac {3}{2},1;-\frac {1}{2};i \tan (e+f x)\right )\right )}{d f (d \tan (e+f x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Tan[e + f*x])/(d*Tan[e + f*x])^(5/2),x]

[Out]

((-1/3 - I/3)*a*(Hypergeometric2F1[-3/2, 1, -1/2, (-I)*Tan[e + f*x]] - I*Hypergeometric2F1[-3/2, 1, -1/2, I*Ta
n[e + f*x]]))/(d*f*(d*Tan[e + f*x])^(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(307\) vs. \(2(81)=162\).
time = 0.20, size = 308, normalized size = 3.14

method result size
derivativedivides \(\frac {a \left (-\frac {2}{d^{2} \sqrt {d \tan \left (f x +e \right )}}-\frac {2}{3 d \left (d \tan \left (f x +e \right )\right )^{\frac {3}{2}}}+\frac {-\frac {\left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 d}-\frac {\sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (d^{2}\right )^{\frac {1}{4}}}}{d^{2}}\right )}{f}\) \(308\)
default \(\frac {a \left (-\frac {2}{d^{2} \sqrt {d \tan \left (f x +e \right )}}-\frac {2}{3 d \left (d \tan \left (f x +e \right )\right )^{\frac {3}{2}}}+\frac {-\frac {\left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 d}-\frac {\sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (d^{2}\right )^{\frac {1}{4}}}}{d^{2}}\right )}{f}\) \(308\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*tan(f*x+e))/(d*tan(f*x+e))^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/f*a*(-2/d^2/(d*tan(f*x+e))^(1/2)-2/3/d/(d*tan(f*x+e))^(3/2)+2/d^2*(-1/8/d*(d^2)^(1/4)*2^(1/2)*(ln((d*tan(f*x
+e)+(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2))/(d*tan(f*x+e)-(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/
2)+(d^2)^(1/2)))+2*arctan(2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)-2*arctan(-2^(1/2)/(d^2)^(1/4)*(d*tan(f*x
+e))^(1/2)+1))-1/8/(d^2)^(1/4)*2^(1/2)*(ln((d*tan(f*x+e)-(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2))
/(d*tan(f*x+e)+(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2)))+2*arctan(2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+
e))^(1/2)+1)-2*arctan(-2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1))))

________________________________________________________________________________________

Maxima [A]
time = 0.52, size = 121, normalized size = 1.23 \begin {gather*} -\frac {\frac {3 \, a {\left (\frac {\sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} + 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} + \frac {\sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} - 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}}\right )}}{d} + \frac {2 \, {\left (3 \, a d \tan \left (f x + e\right ) + a d\right )}}{\left (d \tan \left (f x + e\right )\right )^{\frac {3}{2}} d}}{3 \, d f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*tan(f*x+e))/(d*tan(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

-1/3*(3*a*(sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(d) + 2*sqrt(d*tan(f*x + e)))/sqrt(d))/sqrt(d) + sqrt(2)*ar
ctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(d) - 2*sqrt(d*tan(f*x + e)))/sqrt(d))/sqrt(d))/d + 2*(3*a*d*tan(f*x + e) + a*d
)/((d*tan(f*x + e))^(3/2)*d))/(d*f)

________________________________________________________________________________________

Fricas [A]
time = 0.97, size = 236, normalized size = 2.41 \begin {gather*} \left [\frac {3 \, \sqrt {2} a d \sqrt {-\frac {1}{d}} \log \left (-\frac {2 \, \sqrt {2} \sqrt {d \tan \left (f x + e\right )} \sqrt {-\frac {1}{d}} {\left (\tan \left (f x + e\right ) - 1\right )} - \tan \left (f x + e\right )^{2} + 4 \, \tan \left (f x + e\right ) - 1}{\tan \left (f x + e\right )^{2} + 1}\right ) \tan \left (f x + e\right )^{2} - 4 \, {\left (3 \, a \tan \left (f x + e\right ) + a\right )} \sqrt {d \tan \left (f x + e\right )}}{6 \, d^{3} f \tan \left (f x + e\right )^{2}}, -\frac {3 \, \sqrt {2} a \sqrt {d} \arctan \left (\frac {\sqrt {2} \sqrt {d \tan \left (f x + e\right )} {\left (\tan \left (f x + e\right ) - 1\right )}}{2 \, \sqrt {d} \tan \left (f x + e\right )}\right ) \tan \left (f x + e\right )^{2} + 2 \, {\left (3 \, a \tan \left (f x + e\right ) + a\right )} \sqrt {d \tan \left (f x + e\right )}}{3 \, d^{3} f \tan \left (f x + e\right )^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*tan(f*x+e))/(d*tan(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

[1/6*(3*sqrt(2)*a*d*sqrt(-1/d)*log(-(2*sqrt(2)*sqrt(d*tan(f*x + e))*sqrt(-1/d)*(tan(f*x + e) - 1) - tan(f*x +
e)^2 + 4*tan(f*x + e) - 1)/(tan(f*x + e)^2 + 1))*tan(f*x + e)^2 - 4*(3*a*tan(f*x + e) + a)*sqrt(d*tan(f*x + e)
))/(d^3*f*tan(f*x + e)^2), -1/3*(3*sqrt(2)*a*sqrt(d)*arctan(1/2*sqrt(2)*sqrt(d*tan(f*x + e))*(tan(f*x + e) - 1
)/(sqrt(d)*tan(f*x + e)))*tan(f*x + e)^2 + 2*(3*a*tan(f*x + e) + a)*sqrt(d*tan(f*x + e)))/(d^3*f*tan(f*x + e)^
2)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} a \left (\int \frac {1}{\left (d \tan {\left (e + f x \right )}\right )^{\frac {5}{2}}}\, dx + \int \frac {\tan {\left (e + f x \right )}}{\left (d \tan {\left (e + f x \right )}\right )^{\frac {5}{2}}}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*tan(f*x+e))/(d*tan(f*x+e))**(5/2),x)

[Out]

a*(Integral((d*tan(e + f*x))**(-5/2), x) + Integral(tan(e + f*x)/(d*tan(e + f*x))**(5/2), x))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 275 vs. \(2 (86) = 172\).
time = 0.73, size = 275, normalized size = 2.81 \begin {gather*} -\frac {\sqrt {2} {\left (a d \sqrt {{\left | d \right |}} + a {\left | d \right |}^{\frac {3}{2}}\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {{\left | d \right |}} + 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {{\left | d \right |}}}\right )}{2 \, d^{4} f} - \frac {\sqrt {2} {\left (a d \sqrt {{\left | d \right |}} + a {\left | d \right |}^{\frac {3}{2}}\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {{\left | d \right |}} - 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {{\left | d \right |}}}\right )}{2 \, d^{4} f} - \frac {\sqrt {2} {\left (a d \sqrt {{\left | d \right |}} - a {\left | d \right |}^{\frac {3}{2}}\right )} \log \left (d \tan \left (f x + e\right ) + \sqrt {2} \sqrt {d \tan \left (f x + e\right )} \sqrt {{\left | d \right |}} + {\left | d \right |}\right )}{4 \, d^{4} f} + \frac {\sqrt {2} {\left (a d \sqrt {{\left | d \right |}} - a {\left | d \right |}^{\frac {3}{2}}\right )} \log \left (d \tan \left (f x + e\right ) - \sqrt {2} \sqrt {d \tan \left (f x + e\right )} \sqrt {{\left | d \right |}} + {\left | d \right |}\right )}{4 \, d^{4} f} - \frac {2 \, {\left (3 \, a d \tan \left (f x + e\right ) + a d\right )}}{3 \, \sqrt {d \tan \left (f x + e\right )} d^{3} f \tan \left (f x + e\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*tan(f*x+e))/(d*tan(f*x+e))^(5/2),x, algorithm="giac")

[Out]

-1/2*sqrt(2)*(a*d*sqrt(abs(d)) + a*abs(d)^(3/2))*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(abs(d)) + 2*sqrt(d*tan(f*x +
 e)))/sqrt(abs(d)))/(d^4*f) - 1/2*sqrt(2)*(a*d*sqrt(abs(d)) + a*abs(d)^(3/2))*arctan(-1/2*sqrt(2)*(sqrt(2)*sqr
t(abs(d)) - 2*sqrt(d*tan(f*x + e)))/sqrt(abs(d)))/(d^4*f) - 1/4*sqrt(2)*(a*d*sqrt(abs(d)) - a*abs(d)^(3/2))*lo
g(d*tan(f*x + e) + sqrt(2)*sqrt(d*tan(f*x + e))*sqrt(abs(d)) + abs(d))/(d^4*f) + 1/4*sqrt(2)*(a*d*sqrt(abs(d))
 - a*abs(d)^(3/2))*log(d*tan(f*x + e) - sqrt(2)*sqrt(d*tan(f*x + e))*sqrt(abs(d)) + abs(d))/(d^4*f) - 2/3*(3*a
*d*tan(f*x + e) + a*d)/(sqrt(d*tan(f*x + e))*d^3*f*tan(f*x + e))

________________________________________________________________________________________

Mupad [B]
time = 5.19, size = 103, normalized size = 1.05 \begin {gather*} -\frac {2\,a}{d^2\,f\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}-\frac {2\,a}{3\,d\,f\,{\left (d\,\mathrm {tan}\left (e+f\,x\right )\right )}^{3/2}}+\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}{\sqrt {d}}\right )\,\left (-1+1{}\mathrm {i}\right )}{d^{5/2}\,f}+\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}{\sqrt {d}}\right )\,\left (1+1{}\mathrm {i}\right )}{d^{5/2}\,f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(e + f*x))/(d*tan(e + f*x))^(5/2),x)

[Out]

((-1)^(1/4)*a*atanh(((-1)^(1/4)*(d*tan(e + f*x))^(1/2))/d^(1/2))*(1 + 1i))/(d^(5/2)*f) - (2*a)/(3*d*f*(d*tan(e
 + f*x))^(3/2)) - ((-1)^(1/4)*a*atan(((-1)^(1/4)*(d*tan(e + f*x))^(1/2))/d^(1/2))*(1 - 1i))/(d^(5/2)*f) - (2*a
)/(d^2*f*(d*tan(e + f*x))^(1/2))

________________________________________________________________________________________